
 

Abstract 

This paper will give programming details and examples 
to show how to reach a physical memory address from within 
Windows for the purpose of communicating with standard 
interface cards. 

I. INTRODUCTION 

Calorimetry electronics development and testing involve 
collecting and analyzing large amounts of data.  The system 
(Fig. 1) is required to control various conditions depending 
on the type of test.  The D0 Calorimeter electronics test 
system, dubbed ‘The 5000 Channel Test,’ must monitor and 
control 48x24x4=4608, ~5000, preamp channels, five system 
power supplies with about 12 voltages and currents each, and 
other digital and analog information. This information,  all 
of which is located in a VME crate, is read hundreds of times 
in order to get statistical information.  Code that could 
process this large data set in real time would be very 
desirable. 

All information is made available in a single VME crate.  
A bus-to-bus interface card2  maps VME memory to PC 
memory, allowing the PC to perform all the testing.   

II. OVERVIEW 

                                                        
1 Work supported by the U.S. Department of Energy under contract 
No. DE-AC02-76CHO3000 

The typical arrangement, in the past, was to ‘fit’ the 
interface card into open memory somewhere above the video 
adapter as seen in table 1.  For this arrangement the software 
would simply peek or poke the location to perform the 
necessary operation.  

This arrangement has some major drawbacks.  The open 
memory locations become hard to find as other cards are 
added to the system.  Usually the network cards like to live 
in these open locations and most of our systems are 
networked together.     

Another limitation is that real-mode applications require 
each code and data segment to be less than 64K, and it must 
run in the first megabyte of memory.  The familiar 
SEGMENT/OFFSET addressing, which when combined 
makes up a 20 bit address, does not allow addressing 
memory beyond the first megabyte since 220=1048576.  
Huge arrays in memory are not possible in real mode.  We 
need to process large blocks of data. With real-mode coding 
disk files are manipulated to calculate statistical information 
on large data blocks.  This makes the applications run slowly 
due to disk access times.   

There is no multitasking  since only one application can 
run at a time.  

III. MOVING UP IN MEMORY 

If we could move the interface card above the normal 
RAM of the system we would make precious memory 
available.  If we use Windows as a protected-mode DOS 
extender we get large chunks of memory to program with 
and multitasking capability. 

The method chosen to accomplish memory access 
involves using the DPMI3 function 800.  This function 
allows any physical location to be accessed, thus allowing 
communication with cards located anywhere in memory 
space. 

The interface card is set to address 00C00000h (12 meg), 
above the normal 8 megabyte of RAM typically available on 
our systems.  Table 2 shows this placement in a typical 
system. 
The trick now is to gain access to the physical memory of the 
card at its new location. 

IV. HOW TO GET TO PHYSICAL MEMORY 

                                                                                                
2 We are using a Bit3 Computer Corporation type 403 or 406 
VMEbus Adaptor card. 
3 DOS PROTECTED MODE INTERFACE (see ref [1]). 

REACHING PHYSICAL BOARD ADDRESSES 
IN A PC FROM WINDOWS PROTECTED MODE 

 
David L. Huffman 

Fermilab1 P.O. Box 500 Batavia, IL 60510 

 Linear Address  
Kilobytes Decimal Hex Description 

0 0 00000000  
64 65536 00010000  
128 131072 00020000  
192 196608 00030000  
256 262144 00040000  
320 327680 00050000  
384 393216 00060000  
448 458752 00070000  
512 524288 00080000  
576 589824 00090000  
640 655360 000A0000 VIDEO 
704 720896 000B0000 VIDEO 
768 786432 000C0000 VIDEO 
832 851968 000D0000 INTERFACE CARD 
896 917504 000E0000  
960 983040 000F0000 BASIC & BOOT BIOS 

1024 1048576 00100000 BASIC & BOOT BIOS 

TABLE 1. 
A typical first megabyte of memory in a PC. 

 



 

The Windows environment uses the Intel4 386 and 
higher, processor in virtual mode and provides  access to all 
available RAM memory. This memory is, however, virtual 
and physical addressing is not allowed.   

The problem with programming in this environment is 
that you are not allowed to peek5 (read) or poke (write) any 
physical locations since they are made virtual by the 
processors’ protection feature.  A General Protection Fault 
(exception 13) is the result of such an effort.  In order to read 
and write to physical memory location we need to use the  
DPMI services. 

  The following code excerpt, called MagicCode(), shows 
how the DPMI function 0800h is used to provide access to 
any memory location.   

unsigned char far *pMem; 
static UINT MagicCode( void ) 
{ 
UINT  __DS; 
DWORD dwLinearAddress; 
UINT ilow, ihi; 
 
 if(PhysicalAddress >= 0x100000) {      
 ilow = LOWORD( PhysicalAddress );  
 ihi = HIWORD( PhysicalAddress ); 
 _asm {  
     mov ax, 0800h   
     mov bx, ihi   
     mov cx, ilow 
     mov si, 0003h         
     mov di, 0000h 
     int 31h 
     mov ihi, bx 
     mov ilow,  cx 
 } 
 dwLinearAddress = MAKELONG( ilow, ihi); 
} 
else{ 
 dwLinearAddress = PhysicalAddress; 
} 
_asm mov __DS, ds; 
Sel = AllocSelector( __DS );     

                                                        
4 A registered trade mark of the Intel Corporation, processor type 
386 and higher. 
5 These functions do in fact work from Windows for values below 
1 megabyte.  

SetSelectorBase( Sel, dwLinearAddress );    
SetSelectorLimit( Sel, 0xFFFF );  
FP_SEG(pMem) = sel; 
FP_OFF(pMem)= iOffset; 
FreeSelector(sel);   
} 
The PhysicalAddress variable is set to the 32 bit address 

of the desired memory location.  It is separated into a high 
and low word that is loaded into the bx and cx registers.  
The ax register is loaded with the function call number 
0800h.  The si and dx registers are set to the size of the 
region that will be mapped in bytes.  After an interrupt 31h 
is processed the bx:cx registers will contain the linear 
address that is mapped to the physical address requested.  
Now that the linear address is known we can use it to get a 
pointer to the desired memory.  Using Windows function 
AllocSelector() a new selector is copied using an existing 
selector. The base of the selector is set using the returned 
linear address dwLinearAddress. Note that the linear 
address is equal to the physical address when address is less 
than 1 megabyte and in-line assembly code for the DPMI 
function is not used for those addresses.  

 
With the selector copied  a pointer can be formed using 

FP_SEG( ) and FP_OFF( ) functions to get at the memory 
requested. 

An application such as a memory dump, could loop 
around the FP_OFF( ) function to read/write several different 
locations in the same segment before releasing the selector as 
seen below. 

...  
FP_SEG(pRealMem) = sel;           
 for(i=0 ; i < iCol*2  ; i += 2) 
 {  
  FP_OFF(pRealMem) = i;        
  iodata = *pRealMem;        
// read memory location!!!!!!!! 
  if(bytebutton)  
  { //display as byte info  

  wsprintf(achTemp, "%02X %02X\t", 
   LOBYTE( iodata ), HIBYTE( iodata )); 
  } 
  else  // else display as WORD info 
  wsprintf(achTemp, "%04X\t", iodata );    
  lstrcat(achString[linecnt], achTemp); 
// ***print the ASCI equivalent of the data  *** 
  wsprintf(achTemp, "%c%c",  
   LOBYTE( iodata ), HIBYTE ( iodata )); 
 lstrcat(achChar[linecnt], achTemp); 
 } 
 lstrcat(achString[linecnt], achChar[linecnt]);  
// put the two strings together 
 FreeSelector(sel);               
... 
This may seem like a lot of code, but it is necessary to 

circumvent, in a meaningful way, what the processor 
protection is preventing. 

V.  CONCLUSIONS 

The DPMI function 800h is not the only method available 
for reaching physical addresses.  It does, however, provided 
the  bridge we needed to make the card addressable from 
Windows. It has also allowed advantages previously 
unavailable from DOS code previously used.   

 Linear Address  
Megabyte Decimal Hex Description 

1 1048576 00100000 DOS/BIOS/VIDEO 
2 2097152 00200000 RAM 
3 3145728 00300000 RAM 
4 4194304 00400000 RAM 
5 5242880 00500000 RAM 
6 6291456 00600000 RAM 
7 7340032 00700000 RAM 
8 8388608 00800000 RAM 
9 9437184 00900000 - 

10 10485760 00A00000 - 
11 11534336 00B00000 - 
12 12582912 00C00000 INTERFACE CARD 
13 13631488 00D00000 - 
14 14680064 00E00000 - 
15 15728640 00F00000 - 
16 16777216 01000000 - 

TABLE 2. 
Machine with 8 megabytes of RAM.  

 



 

First it lets us place the interface card at any memory 
space accessible to the hardware. This would be within the 
first 16 megabytes of address space.  This relieves the 
congestion in the first megabyte of memory. 

Second it moves software development into the Windows 
environment, which  benefits the end user and allows the PC 
to run several applications together. 

The MagicCode() has been used by other programmers 
to jump start their applications as they move into the 
Windows  environment.  This basic building block was used 
in programs that monitor and set values in the D0 
Calorimeter 5000 channel test system. 

Recently code was written which reads or writes VME 
memory directly into or from an Excel6 worksheet cell.  This 
code, written as a DLL7, allows users the flexibility of 
viewing and manipulating information any way they wish.   

Looking to the future, there is a way to reach the same 
VME memory through the use of SOCKETS8.  Although 
                                                        
6 Excel is a registered trademark of Microsoft Corp. 
7 Dynamic Link Libraries are like DOS TSRs and are available to 
all Windows Applications. 
8 Sockets will be a standard part of ‘Windows 95’ the next 
Windows generation. It is currently available for Windows for 
Workgroups 3.11. 

slower than the direct link of an interface card it has the 
advantage of being accessible from any ethernet node. 

VI.  REFERENCES 

[1] The DPMI Committee, DOS PROTECTED MODE 
INTERFACE (DPMI) SPECIFICATION, Version 0.9, 
Software Focus Group, Intel Corporation, NW1-18, May 15, 
1990. 
[2] Programming Windows, WINDOWS MAGAZINE, July 
1992, pp. 272. 
[3] Andrew Schulman, PC MAGAZINE, Lab Notes “The 
Programming Challenge of Windows Protected Mode”, June 
25, 1991, pp. 371-389. 
[4] Kerry Loynd, DR. DOBB’S JOURNAL, Mixing Real- and 
Protected-Mode Code, February 1992. 
[5] Paul Bonneau, WINDOWS/DOS DEVELOPER’s 
JOURNAL, Memory Management, Far Pointers for Huge 
Memory, September 1994, Vol. 5, No.9, pp. 6-22. 
 

ADC
 ELECTRONICS

VME Crate

PULSER CONTROLLER

CALIBRATION PULSER

TIMING GENERATOR

P
ul

se
r 

In
te

rf
ac

e

B
it3

 I
nt

er
fa

ce

V
er

tic
le

 In
te

rc
on

ne
ct

M
V

M
E

 1
33

A
-2

0

To
ke

nr
in

g 
80

2.
5 

M
od

C
ra

te
 U

til
. M

od
ul

e

M
V

M
E

 2
15

-3

M
IL

-1
55

3 
C

on
tr

ol
 

LOCAL
CONSOLE

R E M O T E  T E R M I N A L

PC

HEAT EXCHANGER

HEAT EXCHANGER

P O W E R  D I S T R I B U T I O N  
CHASSIS

R A C K  M O N I T O R  I N T E R F A C E

ADC LV POWER SUPPLY

VME BUS 
TO 

PC BUS

R E M O T E  T E R M I N A L

R E M O T E  T E R M I N A L

R A C K  M O N I T O R  I N T E R F A C E

POWER DISTRIBUTION 
CHASSIS

PREAMP LV POWER 
SUPPLY

T E M P E R A T U R E  M O N I T O R

CAPACITOR BOX
4608 CHANNEL

DETECTOR 
SIMULATION

192 
25 

Pair
30 

Ohm
Coax
Cable

s

PREAMP BOX
48 Channels per Card
24 Cards per Column

4 Columns

BLS ELECTRONICS

BLS ELECTRONICS BLS ELECTRONICS

BLS ELECTRONICS

BLS ELECTRONICS BLS ELECTRONICS

HEAT EXCHANGERHEAT EXCHANGER

FAN & HEAT
E X C H A N G E R

FAN & HEAT
EXCHANGER

P U L S E R  S W I T C H  B O X

R A C K  M O N I T O R  I N T E R F A C E

R A C K  M O N I T O R  I N T E R F A C E R A C K  M O N I T O R  I N T E R F A C E
P O W E R  D I S T R I B U T I O N  

CHASSIS

B L S  C O N T R O L L E R  F A N O U T

BLS LV POWER SUPPLY

BLS LV POWER SUPPLY

BLS LV POWER SUPPLY

12 X 50 
Conductor 
Twisted Pair

192 X 50 
Conductor 
Twisted Pair

 
The 5000 Channel Test system. 

Figure 1. 


